If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x-108=0
a = 1; b = 4; c = -108;
Δ = b2-4ac
Δ = 42-4·1·(-108)
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8\sqrt{7}}{2*1}=\frac{-4-8\sqrt{7}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8\sqrt{7}}{2*1}=\frac{-4+8\sqrt{7}}{2} $
| 3(n-2+8=-83 | | -6x-11x=136 | | -10=-5+n | | 12a=-a | | 13+3(3x+8)=x-8 | | 9x^2+42x-7=0 | | -7b+8(1+8b)=236 | | n-4/3=-14/3 | | (x-2)/7=2+(3-x)/14 | | 5x+7-3x=2+×+4 | | 5x-(2+7x)=5(x-1)-2x | | 3x+2x-6=23 | | x-(73+27)=400 | | 4=2401^x-3 | | x+8/2=-6 | | A=5x20 | | 5(x-9)=2x-45 | | 4(w+3)=2(3w+6)-2w | | 9x+7=-3+5x+18 | | 2(x-7)=4(x+3) | | 3,9x+9=2,4x+12 | | 6y-4=5-y | | 4(6n+4)=206 | | x+8/2=-12 | | 1/4(20-48)=6-a | | -82=-3(5v+6)+7v | | 10(2y+2)-y=2(8y-8 | | 2x+2x-6=24 | | (x+5)^4=16 | | 13=1/6y+2× | | 6(x=4)-2(x-1)=2x+20 | | 3y^2-78y+250=0 |